Multiplying Polynomials

Using the Distributive Property to Multiply a Monomial and a Trinomial

Multiplication of a *monomial* and a *polynomial* is simply an extension of the *distributive property*. Make sure that *every term in the parentheses* is multiplied by the *term in front of the parentheses*.

$$3x(2a + 3b - 4c) =$$
 multiply every term in the parentheses by the term $3x$ in front of the parentheses

Typically, mathematicians like to put things in order. They will rearrange the variables in the answer above so that the variables in each term are *alphabetical*. Therefore, the final answer would be as follows.

$$6xa + 9xb - 12xc =$$

$$6ax + 9bx - 12cx$$

Using the FOIL Method to Multiply Two Binomials

When we multiply two polynomials, we extend the distributive property even further to make sure that every term in the *first* set of parentheses is multiplied by every term in the *next* set of parentheses.

Look carefully at the product below.

$$(a+b)(x-y) = ax - ay + bx - by$$

Notice that both *x* and *y* were multiplied by *a*, and then by *b*. This is called the **FOIL method** because

- the two First terms (a and x) are multiplied
- then the two **O**utside terms (*a* and -*y*) are multiplied
- then the two Inside terms (b and x) are multiplied and lastly
- the two Last terms (*b* and -*y*) are multiplied together.
 - F First terms
 - O Outside terms
 - I Inside terms
 - L Last terms

2 Outside

1 First
$$(a + b)(x - y) = ax - ay + bx - by$$
3 Inside
4 Last

It is important to be *orderly* when you multiply to ensure that you don't leave out a step. Also, be very careful to watch the positive (+) and negative (-) signs as you work.

Special patterns often occur. Knowing these may help you.

$$(a+b)^{2} = (a+b)(a+b) = a^{2} + 2ab + b^{2}$$

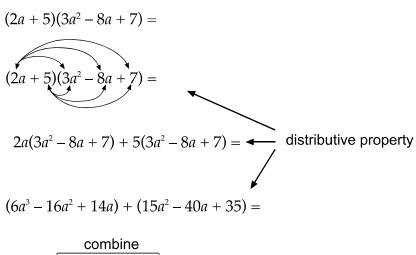
$$(a-b)^{2} = (a-b)(a-b) = a^{2} - 2ab + b^{2}$$

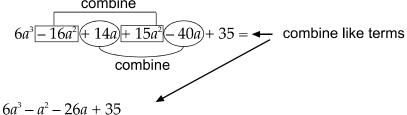
$$(a-b)(a+b) = a^2 - b^2$$

$$(a+b)^2 \neq a^2+b^2$$

 $(a + b)^2 \neq a^2 + b^2$ To write this expression in simplest form, the power of not simply distributed over a + b. Instead simplest form, the power of 2 is a + b. Instead...

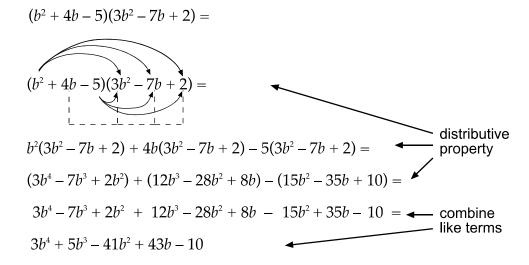
$$(a+b)^2 = (a+b)(a+b) \qquad \longleftarrow (a+b)^2 \text{ is multiplied by itself,}$$
$$(a+b)(a+b).$$


Using the Distributive Property to Multiply Any Two Polynomials


Let's look at using the distributive property to do the following.

- multiply a binomial and a trinomial in horizontal form
- multiply two trinomials in horizontal form
- multiply polynomials in vertical form

Example 1


Find the product of a binomial and a trinomial in **horizontal form**.

Example 2

Find the product of two trinomials in **horizontal form**.

Example 3

Find the product of polynomials in vertical form.

$$(c^3 - 8c^2 + 9)(3c + 4) =$$

Note: There is no *c* term in $c^3 - 8c^2 + 9$, so 0c is used as a placeholder.

$$c^{3} - 8c^{2} + 0c + 9$$

$$(x) \quad 3c + 4$$

$$4c^{3} - 32c^{2} + 0c + 36$$

$$3c^{4} - 24c^{3} + 0c^{2} + 27c$$

$$3c^{4} - 20c^{3} - 32c^{2} + 27c + 36$$